Cold-induced freezing tolerance in Arabidopsis.

نویسندگان

  • L A Wanner
  • O Junttila
چکیده

Changes in the physiology of plant leaves are correlated with enhanced freezing tolerance and include accumulation of compatible solutes, changes in membrane composition and behavior, and altered gene expression. Some of these changes are required for enhanced freezing tolerance, whereas others are merely consequences of low temperature. In this study we demonstrated that a combination of cold and light is required for enhanced freezing tolerance in Arabidopsis leaves, and this combination is associated with the accumulation of soluble sugars and proline. Sugar accumulation was evident within 2 h after a shift to low temperature, which preceded measured changes in freezing tolerance. In contrast, significant freezing tolerance was attained before the accumulation of proline or major changes in the percentage of dry weight were detected. Many mRNAs also rapidly accumulated in response to low temperature. All of the cold-induced mRNAs that we examined accumulated at low temperature even in the absence of light, when there was no enhancement of freezing tolerance. Thus, the accumulation of these mRNAs is insufficient for cold-induced freezing tolerance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance.

Many plants, including Arabidopsis, show increased resistance to freezing after they have been exposed to low nonfreezing temperatures. This response, termed cold acclimation, is associated with the induction of COR (cold-regulated) genes mediated by the C-repeat/drought-responsive element (CRT/DRE) DNA regulatory element. Increased expression of Arabidopsis CBF1, a transcriptional activator th...

متن کامل

PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana

Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulat...

متن کامل

The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation.

In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 p...

متن کامل

ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.

Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a sc...

متن کامل

Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress

Arabidopsis CBF genes (CBF1-CBF3) encode transcription factors having a major role in cold acclimation, the adaptive process whereby certain plants increase their freezing tolerance in response to low non-freezing temperatures. Under these conditions, the CBF genes are induced and their corresponding proteins stimulate the expression of target genes configuring low-temperature transcriptome and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 120 2  شماره 

صفحات  -

تاریخ انتشار 1999